topological dimension - definitie. Wat is topological dimension
Diclib.com
Woordenboek ChatGPT
Voer een woord of zin in in een taal naar keuze 👆
Taal:     

Vertaling en analyse van woorden door kunstmatige intelligentie ChatGPT

Op deze pagina kunt u een gedetailleerde analyse krijgen van een woord of zin, geproduceerd met behulp van de beste kunstmatige intelligentietechnologie tot nu toe:

  • hoe het woord wordt gebruikt
  • gebruiksfrequentie
  • het wordt vaker gebruikt in mondelinge of schriftelijke toespraken
  • opties voor woordvertaling
  • Gebruiksvoorbeelden (meerdere zinnen met vertaling)
  • etymologie

Wat (wie) is topological dimension - definitie

INVARIANT ASSOCIATED TO A TOPOLOGICAL SPACE; THE SMALLEST INTEGER 𝑛 SUCH THAT, FOR EVERY COVER, THERE IS A REFINEMENT IN WHICH EVERY POINT LIES IN THE INTERSECTION OF AT MOST 𝑛+1 COVERING SETS
Lebesgue dimension; Covering dimension; Lebesgue covering theorem; Topological dimension; Ostrand's theorem
  • 1921}}

Lebesgue covering dimension         
In mathematics, the Lebesgue covering dimension or topological dimension of a topological space is one of several different ways of defining the dimension of the space in a
Dimension (data warehouse)         
STRUCTURE THAT CATEGORIZES FACTS AND MEASURES IN A DATA WAREHOUSE
Dimension table; Dimension(data warehouse); Dimensional Role-Playing; Data dimension; Conformed dimension
A dimension is a structure that categorizes facts and measures in order to enable users to answer business questions. Commonly used dimensions are people, products, place and time.
Topological property         
OBJECT OF STUDY IN THE CATEGORY OF TOPOLOGICAL SPACES
Topological invariant; Topological properties
In topology and related areas of mathematics, a topological property or topological invariant is a property of a topological space that is invariant under homeomorphisms. Alternatively, a topological property is a proper class of topological spaces which is closed under homeomorphisms.

Wikipedia

Lebesgue covering dimension

In mathematics, the Lebesgue covering dimension or topological dimension of a topological space is one of several different ways of defining the dimension of the space in a topologically invariant way.